Fused Four-Dimensional Real Division Algebras
نویسندگان
چکیده
منابع مشابه
Eight-Dimensional Real Quadratic Division Algebras
Given a euclidean vector space V , a linear map η : V ∧ V → V is called dissident in case v, w, η(v∧w) are linearly independent whenever so are v, w ∈ V . The problem of classifying all real quadratic division algebras is reduced to the problem of classifying all eight-dimensional real quadratic division algebras, and further to the problem of classifying all dissident maps η : R ∧ R → R. Shoul...
متن کاملReal Gel’fand-mazur Division Algebras
We show that the complexification (Ã, τ̃) of a real locally pseudoconvex (locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra (A,τ) is a complex locally pseudoconvex (resp., locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra and all elements in the complexification (Ã, τ̃) of a commutati...
متن کاملFour - Dimensional Lie Algebras
The main goal is to classify 4-dimensional real Lie algebras gwhich admit a para-hypercomplex structure. This is a step toward the classification of Lie groups admitting the corresponding left-invariant structure and therefore possessing a neutral, left-invariant, anti-self-dual metric. Our study is related to the work of Barberis who classified real, 4-dimensional simply-connected Lie groups w...
متن کاملHypersymplectic Four-dimensional Lie Algebras
A study is made of real Lie algebras admitting a hypersymplectic structure, and we provide a method to construct such hypersymplectic Lie algebras. We use this method in order to obtain the classification of all hypersymplectic structures on fourdimensional Lie algebras, and we describe the associated metrics on the corresponding Lie groups. MSC. 17B60, 53C15, 53C30, 53C50.
متن کاملOn the Classification of Four-Dimensional Quadratic Division Algebras over Square-Ordered Fields
A square-ordered field, also called Hilbert field of type (A), is understood to be an ordered field all of whose positive elements are squares. The problem of classifying, up to isomorphism, all 4-dimensional quadratic division algebras over a square-ordered field k is shown to be equivalent to the problem of finding normal forms for all pairs (X, Y ) of 3× 3-matrices over k, X being antisymmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1358